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The problem of non-isothermal absorption of vapour into freely expanding liquid sheets is addressed in
this study. This is done in the context of four models that characterise the coupled heat and mass transfer
in the liquid phase: a nonlinear model retaining the effect of sheet growth, an approximate model for
slowly increasing mass flow rate in the sheet, a large Lewis number model and finally, a boundary layer
model. These models have been numerically or analytically solved and applied to the comparative anal-
ysis of two different working pairs, LiBr–H2O and LiNO3–NH3, under conditions representative of adia-
batic absorption in refrigeration systems. The limits of applicability of each model have been assessed
and the sensitivity of the results to the sheet aperture angle, heat of absorption and initial subcooling
has also been tested. For equal initial mass fraction and subcooling, the models indicate that Sherwood
number and the rate of absorption in laminar expanding sheets for the LiNO3–NH3 solution are always
superior to those for the LiBr–H2O solution.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Absorption chillers and heat pumps have received growing
attention over the last few decades. These machines allow the
use of low-grade heat to produce a cooling effect, or a heat trans-
formation to higher temperature levels, with no (or minimal)
mechanical power consumption [1,2]. This makes them an attrac-
tive option in waste heat recovery, solar cooling and energy saving
policies.

The absorber is one of the most performance limiting and vol-
ume demanding components of an absorption system. In the ab-
sorber the concentrated liquid solution absorbs the refrigerant
vapour that comes from the evaporator. During this process, heat
and mass transfer in the liquid solution are strongly coupled. Sev-
eral configurations for the liquid and vapour streams in the absor-
ber have been proposed: falling films, bubbles, sprays and droplets,
liquid jets and sheets, etc. Absorption using drops, sprays, liquid
jets and sheets takes place in an adiabatic chamber far from iso-
thermal conditions. The cooling of the solution is carried out sepa-
rately, in a specialised and efficient heat exchanger. This operation
mode is generally referred to as adiabatic absorption [3].

The use of expanding liquid sheets in adiabatic absorbers may
offer advantages in enhancing the mass transfer as well as in
reducing both volume and cost of the system. In this work, follow-
ing the terminology of Simpson and Lynn [4], an expanding liquid
sheet refers to any free stream of solution that expands in multiple
directions from one common origin, while its thickness progres-
ll rights reserved.

orra).
sively reduces. Flat-fan sheets, conical sheets and radially expand-
ing sheets are significant examples of this flow configuration. A
smaller injection pressure is required to produce an expanding
sheet than is required to atomize the liquid in a spray. There is a
broad literature concerning the dynamics of expanding liquid
sheets. Classical studies of these spreading sheets can be found
in [5–9].

Several works have been conducted in order to understand the
heat and mass transfer in expanding liquid sheets; however, most
of these studies are not directly devoted to absorption chillers and
heat pumps.

One of the earliest experimental works attending the problem
of water vapour condensation on subcooled conical swirling sheets
was that performed by Weinberg in 1952 [10]. In this work, large
temperature variations, and therefore high rates of condensation,
were observed in the sheet region of the spray. Other subsequent
investigations on condensation also addressed the direct measure-
ment of temperatures in conical sheets of water [11,12] and R113
refrigerant [13]. Condensation on laminar flat-fan sheets was stud-
ied by Hasson et al. [14] and Tamir and Hasson [15]. This second
work also examines the evaporation process in flat-fan sheets.

The seminal work of Hasson et al. in 1964 [16] includes the first
analytical approximation to the problem of heat transfer in a
smooth fan-shaped sheet of water during vapour condensation.
The energy equation for flat-fan sheets was resolved in the form
of a series solution, neglecting the effect of mass growth due to
condensation at the sheet surface. Comparison of these results to
previous measurements [14,15] demonstrates a qualitative simi-
larity. Lee and Takin [11] developed a numerical simulation of
the condensation in the laminar sheet region of a conical spray
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Nomenclature

a0 width of the sheet at the nozzle exit, 2r0 sinðh=2Þ, m
Cp specific heat of the solution, J kg�1 K�1

c1c2 equilibrium constants of the solution
D diffusion coefficient of absorbate in the solution, m2 s�1

deq nozzle equivalent diameter, 2ða0e0=pÞ1=2, m
F approach to equilibrium factor, X̂b
h specific enthalpy of the solution, J kg�1

hm local mass transfer coefficient, m s�1

�hm mean mass transfer coefficient, m s�1

hv specific enthalpy of the vapour, J kg�1

k thermal conductivity of the solution, W m�1 K�1

Labs specific heat of absorption, J kg�1

L�abs equivalent specific heat of absorption, Labs=X0, J kg�1

Le solution Lewis number, a=D
_m solution mass flow rate of the sheet, perhqV0=180,

kg s�1

_mv mass flow rate of absorbed vapour in the sheet, _m� _m0,
kg s�1

_m00v absorbate mass flux at the interface, kg m�2 s�1

_m0 initial mass flow rate of the solution, kg s�1

pv absorbate vapour pressure, Pa
Pet transversal velocity Peclet number, V0e2

0=4ar0

r radial coordinate, m
r0 radial coordinate at the initial sheet section, m
Sh local Sherwood number, hme=2D
Sh mean Sherwood number, �hm�e=2D
T temperature of the solution, �C
T̂ normalised solution temperature, ðT � T0Þ=ðT1 � T0Þ
Vr radial velocity of the solution, m s�1

Vz transversal velocity of the solution, m s�1

V0 initial radial velocity, m s�1

X absorbent mass fraction [mass of absorbent/mass of
solution]

XeqðTÞ equilibrium absorbent mass fraction c1T þ c2

X̂ normalised mass fraction, ðX � X0Þ=ðX1 � X0Þ

y streamwise distance relative to the initial sheet section, m
z transversal coordinate, m

Greek symbols
a thermal diffusivity of the solution, m2 s�1

d1; d2 heat of absorption normalisations
d3 normalised subcooling
DTsub initial subcooling of the solution, �C
DXlm logarithmic mean absorbent mass fraction difference
DX̂lm normalised logarithmic mean mass fraction difference,

DXlm=X0d3

e sheet thickness, m
e0 sheet thickness at the initial position of the sheet, m
ê normalised sheet thickness, e=eNA

g normalised transversal coordinate, 2z=e
h aperture angle of the sheet, degree
n dimensionless radial coordinate, r=r0
n̂ normalised radial coordinate, ðn3 � 1Þ=3PetLe
n̂tr transition normalised radial coordinate
q solution density, kg m�3

/ self-similar variable, ð1� gÞ=2n̂1=2

w dimensionless streamwise distance, 2y=e0

x cone angle in conical sheets, degree

Subscripts
b bulk conditions
BL boundary layer approximation
max maximum value
NA non-absorption conditions
NE non-expanding free sheets
s conditions at the sheet surface
st boundary layer stable conditions
v vapour
0 initial conditions
1 complete adiabatic saturation, fully developed conditions
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whose aperture angle and velocity had been previously obtained in
[17]. More recently, Takahashi and co-workers [12] extended the
series solution of Hasson et al. [16] to the case of condensation
in a swirling conical sheet. In all of these works, the predicted
mean temperature in the sheet underestimated the experimental
data. Turbulence transport in the sheet was suggested as a factor
that could produce such discrepancies [12].

In 1972 Tamir and Rachmilev [18] published their experimental
results on absorption of CO2 in a ‘‘rapid laminar fan-shaped water
sheet”. The temperature in the sheet remained constant because of
the low heat of absorption of CO2 into water. Using the analogy be-
tween heat and mass transfer, Tamir and Rachmilev [18] adapted
the series solution for the flat-fan sheets of Hasson et al. [16] to
the problem of isothermal absorption. Their analytical model was
found to be in good agreement with measurements. Simpson and
Lynn [4] experimentally characterised the desorption of various
substances such as oxygen, Freon 114 and n-butane, from laminar
flat-fan and conical sheets of water/salt solutions. A similar conver-
sion of the Hasson et al. [16] series solution was also performed by
Simpson and Lynn [4] in their model estimation of isothermal
desorption, and reasonable concordance between the model and
the experimental data was found. For turbulent expanding sheets
however, the concordance was only qualitative, necessitating a
corrected empirical model [19]. In all of these works on absorption
and desorption, conditions near equilibrium were detected even at
extremely short sheet lengths.

In a work dealing with the problem of water vapour absorption
into sprays of aqueous lithium bromide solution, Ryan et al. [20]
indicated that the short sheet region of a spray before breaking into
droplets had a relevant contribution in their measurements of the
global absorption in conical and flat-fan sprays. Neglecting the
sheet thickness variation they used a sheet of constant thickness
(from [16]) in order to incorporate the contribution of the short
sheet region into the spray absorption modelling.

The aim of the present work is to extend the aforementioned
numerical and analytical models for expanding sheets to the case
of non-isothermal vapour absorption. Conditions representative
of adiabatic absorbers in refrigeration systems are selected to the
integration of the equations. The coupled heat and mass transfer
models presented in this investigation are also inspired by the sim-
ulation techniques developed for absorption in falling films. Excel-
lent reviews, containing numerical, analytical and experimental
data for absorption in falling films can be found in the works of
Grossmann [21] and Killion and Garimella [22].

2. Expanding sheet adiabatic absorption

Fig. 1 presents a conceptual drawing of an expanding sheet adi-
abatic absorber. It consists of an adiabatic chamber into which the
concentrated solution of an absorption system is injected, produc-
ing an expanding liquid stream such as a flat-fan, conical, or radi-
ally expanding sheet (see Fig. 1a, b and c, respectively). In Fig. 1c, a
360� nozzle generates the disk sheet, but other methods can also
be used (for example the impingement of two round liquid jets).
The liquid solution is composed of two substances: absorbent
and absorbate (also known as refrigerant). Additionally, there is a
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Fig. 1. Schematic diagram of an adiabatic absorber containing a flat-fan sheet of
liquid solution (a). Other liquid flow configurations are: conical sheet (b), and disk
sheet (c).
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flow of absorbate that is in the vapour phase, close to saturation
conditions, that enters the chamber. Absorbate vapour comes from
the evaporator of the absorption machine where it acts as a refrig-
erant working fluid.

The liquid solution enters the chamber in a subcooled state;
that is, its temperature is initially less than the equilibrium tem-
perature at the pressure pv of absorbate vapour in the chamber.
As a result, the absorbate vapour is spontaneously absorbed by
the liquid sheet, decreasing the solution absorbent mass fraction
from the input (concentrated solution) to the output (diluted solu-
tion) of the absorber.

In this work, results will be compared between two different
working pairs of binary solution: aqueous lithium bromide
solution, LiBr–H2O; and lithium-nitrate–ammonia solution,
LiNO3–NH3. Here H2O and NH3 are the absorbate (or refrigerant)
substances and the remaining substances the absorbent. Table 1
contains basic properties of these working pairs. Properties for
the pair LiNO3–NH3 correspond to the operating conditions of a
low-pressure double-stage absorption chiller fed with a low-grade
heat source [23]. Working conditions for the pair LiBr–H2O [24–
26], have been chosen so that the solution operates with the same
inlet temperature T0 and mass fraction X0 as the ammonia solution
pair. Mass diffusivity D of water into LiBr–H2O solution is taken
from [27].
Table 1
Working pairs properties corresponding to similar initial conditions (T0 = 40 �C and
X0 ¼ 0:633).

LiBr–H2O LiNO3–NH3

pv [Pa] 9.3 � 102 2.36 � 105

q [kg m�3] 1789 1132
Cp [J kg�1 K�1] 1830 2620
a [m2 s�1] 1.37 � 10�7 5.07 � 10�7

D [m2 s�1] 1.54 � 10�9 0.74 � 10�9

c1 [�C�1] 4.85 � 10�3 3.72 � 10�3

c2 [–] 0.385 0.434
Labs [J kg�1] 2.44 � 106 1.31 � 106
3. Physical model and general assumptions

The physical model to be considered in the simulation is sche-
matically represented in Fig. 2. A free expanding sheet of liquid
solution flows from an injector, a nozzle or a small impinging plate.
Both sides of the liquid sheets are in contact with a stagnant absor-
bate (refrigerant) in the vapour phase. This is the only gaseous sub-
stance in the chamber. The liquid sheet spreads outwardly in
divergence directions from a virtual origin. Expansion of the flow
causes the thickness e of the liquid sheet to gradually narrow in
the stream direction. The sheet exits the nozzle or injector at
r ¼ r0, from this precise moment it starts to absorb the surrounding
vapour.

When the divergence directions of the flow are in a plane, as
they are in Fig. 2, the liquid sheet adopts the shape of a flat-fan
or a radially expanding disk (the latter if the angle h covered by
the sheet reaches 360�). Conical sheets are created if the directions
of divergence form a hollow cone. This can be approximated by a
flat-fan sheet rolled up along the axis of a cone whose angle x
(see Fig. 1b) satisfies x ¼ 2 arcsinðh=hmaxÞ, being hmax = 360�.

The mass absorption into the expanding sheet of Fig. 2, through
two sides of the sheet, is strongly coupled with the transfer of heat
of absorption that is released at the surface. In formulating the
absorption model the following assumptions are made:

� Steady state conditions are assumed.
� The liquid sheet flow is laminar and its velocity is high enough

to neglect the effects of the gravitational acceleration as well
as interfacial liquid–vapour drag on the sheet hydrodynamics.

� The contribution of the borders of the sheet (rims) to the total
amount of absorbed refrigerant is neglected.

� Finite dilution at the interface, transversal velocity Vz, and
growth of mass rate in the sheet due to absorption are
considered.

� At the free surface of the sheet, instantaneous equilibrium arises
between the solution temperature and the species mass fraction.

� At the initial position of the sheet, r ¼ r0, the temperature and
mass fraction profiles of the solution are uniform and equal to
T0 and X0, respectively. This holds except at the sheet surface
where the mass fraction decreases to XeqðT0Þ on account of the
equilibrium condition.

� The mixture properties (q, Cp, a, D) and heat of absorption are
considered to be constant under the narrow range of tempera-
tures and species mass fractions reached by the present model.

� Heat transfer from the solution to the vapour (or to its surround-
ings) and viscous thermal dissipation are neglected.
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Fig. 2. Physical model and coordinate system.
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Many of these simplifying assumptions are representative of prac-
tical operating conditions in adiabatic absorption and are also com-
mon to many models in falling-film absorption. At this regard, it is
important to note that in non-adiabatic absorption large incre-
ments of absorbate mass fraction and temperature can occur, being
in that case recommendable to calculate the local variation of
working pair properties with X and T (see for example [28]). This
contrasts with adiabatic absorption for which the assumption of
unvarying properties in the mixture is particularly suited because
potential increments of T and, above all, X are significantly smaller
[3,23], as demonstrated in Appendix A.
4. Flow field in the sheet

Because it is assumed constant density in the flow, the liquid
sheet hydrodynamics do not depend on temperature and species
mass fraction. Therefore, the velocity field in an expanding sheet
can be deduced at the onset for later use in the heat and mass
transfer equations. Owing to stream-wise momentum conserva-
tion and assuming invariance in angular direction, the radial veloc-
ity Vr of the mixture in a smooth laminar expanding sheet can be
considered constant [4,6,15–18,29]:

Vr ¼ V0 ð1Þ

where V0 is the radial initial velocity of the liquid sheet at r ¼ r0.
Thus, from the continuity equation in polar coordinates and consid-
ering null angular velocity, it is straightforward to obtain the trans-
versal velocity Vz of the mixture in the sheet:

Vz ¼ �
V0Z

r
ð2Þ

where z is the transversal coordinate (Fig. 2). Observe that Vz is null
at the sheet symmetry plane z ¼ 0 and negative for z > 0. This
means that, given any point in the sheet, an incoming flow of solu-
tion in the transversal direction arises in order to replace the solu-
tion that is expanding radially in the sheet.

It should be noted that sheet retraction at the rims [30] and dis-
integration [5] has not been considered. As a result, the model
should only be applied to smooth flow conditions in the region be-
fore sheet instabilisation and break-up.
5. Energy and mass fraction equations

5.1. Complete nonlinear model

Transport of heat and mass within the liquid sheet is gov-
erned by advective and diffusive processes. No generation of spe-
cies takes place in the problem and diffusion of heat and mass in
the sheet in the streamwise direction can be disregarded as com-
pared to diffusion in the transverse direction. Under these sim-
plifications and the assumptions presented previously, the
differential equations for the conservation of absorbent mass
and solution energy [31] in any point of an expanding sheet
are (respectively) expressed in polar coordinates (Fig. 2) as
follows:

1
r
@

@r
ðrVrXÞ þ

@

@z
ðVzXÞ ¼ D

@2X
@z2 ð3Þ

1
r
@

@r
ðrVrTÞ þ

@

@z
ðVzTÞ ¼ a

@2T
@z2 ð4Þ

where X and T are the local mass fraction of absorbent and the solu-
tion temperature in the liquid sheet.

Because of the symmetry of the problem, Eqs. (3) and (4) are
solved in a domain comprising only half the volume of the liquid
sheet. The boundary conditions referring to this domain are pre-
sented in the following lines.

(i) The absorbent mass fraction and solution temperature at the
initial section of the expanding sheet are:
8

Xðr0; zÞ ¼

X0; 0 � z < e0
2

Xst; z ¼ e0
2

<
: ð5Þ

Tðr0; zÞ ¼
T0; 0 � z < e0

2

Tst ; z ¼ e0
2

8<
: ð6Þ

Here e0 ¼ eðr0Þ is the thickness of the sheet at the initial posi-
tion. As in the work of Brauner [32], initial values of X and T
at the surface have been selected equal to the values pro-
vided by the boundary layer theory (Section 5.4) near the ini-
tial position:

Xst ¼ X0
Labsc1 þ XeqðT0ÞcDLe1=2

Labsc1 þ x0cDLe1=2 ð7:aÞ

Tst ¼
Xst � c2

c1
ð7:bÞ

Note that, due to the parabolic character of Eqs. (3) and (4),
results for X and T are weakly affected by their initial values
at the sheet surface. In fact, as will be confirmed later on,
large Lewis number, Le� 1, causes rapid thermal dissipation
as compared to mass transport. This avoids a substantial in-
crease of temperature at the surface of the sheet z ¼ e0=2 in
r ¼ r0 and the temperature profile in Eq. (6) may be consid-
ered constant.
(ii) Gradients along the transversal direction are null at the
plane of symmetry:
@X
@z

����
z¼0
¼ 0; r � r0 ð8Þ

@T
@z

����
z¼0
¼ 0; r � r0 ð9Þ
(iii) The equilibrium mass fraction of absorbent at the free sur-
face, under small thermal variations, is commonly expressed
(see for example, [23,33]) as a linear function of the solution
temperature:
Xðr; zsÞ ¼ XeqðTsÞ ¼ c1 	 Tðr; zsÞ þ c2 ð10Þ
where zs ¼ e=2 and Ts are the values of the z coordinate and
temperature at the free surface, respectively. The constants
c1 and c2 are properties of the mixture (Table 1) and depend
on the absorbate vapour pressure pv which is assumed con-
stant throughout the chamber.
(iv) The absorbed mass and the heat of absorption released at the
sheet surface are both transported by advection and diffusion
into the fan sheet. An energy balance at the free surface of the
fan sheet provides the next boundary condition [34]:
k
@T
@z

����
s

¼ Labs _m00v ð11Þ

where Labs is the specific heat of absorption of vapour in the
solution and _m00v is the mass flux of absorbate vapour that is
absorbed at the free surface of the expanding liquid sheet:

_m00v ¼ �
qD
Xs

@X
@z

����
s

ð12Þ

Advection at the sheet surface is due to the motion of the
liquid solution relative to the free surface. Under the com-
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mon operating conditions of absorption systems, Finite
dilution at the interface (i.e. Xs not close to unity) will
make advective terms relevant [22]. Nakoryakov and co-
workers [35] also included advection in their model of
absorption into a stagnant layer. Eq. (11) is equivalent to
the expression deduced by inclusion of the net flow mo-
tion term (due in this case to absorbate diffusion) into
Fick’s law in a fixed coordinate reference system [36,32].

One should observe that, as radial diffusion terms are negli-
gible, the conservation equations ((3) and (4)) are parabolic and
no boundary conditions are required downstream of the
domain.

The following differential equation can be derived for the sheet
thickness e from a mass balance in the fan sheet:

1
r

d
dr
ðreqV0Þ ¼ �

2Dq
Xs

@X
@z

����
s

ð13Þ

where e0 is the initial condition of e in this equation. This last
expression is coupled with the heat and mass balance equations
for the sheet.

For convenience, the following transformations will be used for
the radial and transversal coordinates, respectively:

n̂ ¼ 1
3PetLe

ðn3 � 1Þ ð14Þ

g ¼ z
zs
¼ 2z

e
ð15Þ

where n ¼ r=r0 and Pet is the Peclet number for the initial transver-
sal velocity of the solution at the interface:

Pet ¼
jVz;sj 	 zs

a

����
r¼r0

¼ V0e2
0

4r0a
ð16Þ

The normalised variable n̂ resembles the dimensionless radial dis-
tance used by Tamir and Rachmilev [18]. The transversal coordi-
nate has been normalised via Eq. (15) in order to obtain g ¼ 1 at
the free surface. This change of variables not only simplifies the
conservation equations, but also converts the physical domain
of the expanding sheet into a rectangular domain
(n̂ � 0; 0 � g � 1).

Under the proposed transformation of coordinates, the differen-
tial equations (3), (4) and (13) for the coupled heat and mass trans-
fer during non-isothermal absorption of vapour into an expanding
sheet become:
@X̂

@n̂
¼ g

ê
dê
dn̂

@X̂
@g
þ 1

ê2

@2X̂
@g2 ð17:aÞ

@T̂

@n̂
¼ g

ê
dê
dn̂

@T̂
@g
þ Le

ê2

@2T̂
@g2 ð17:bÞ

dê
dn̂
¼ 1

d�1
3 � X̂ðn̂;g ¼ 1Þ

1
ê
@X̂
@g

�����
g¼1

ð17:cÞ
where X̂ ¼ ðX � X0Þ=ðX1 � X0Þ and T̂ ¼ ðT � T0Þ=ðT1 � T0Þ are the
normalised temperature and mass fraction, and where X1 and T1
are the values reached under complete adiabatic saturation (see
Appendix). ê ¼ e=eNA is the normalised sheet thickness, eNA being
the thickness of an expanding sheet that does not absorb vapour
as it is not initially subcooled. Applying mass conservation, it is
straightforward to demonstrate that eNA ¼ e0r0=r.

From the previous transformations, the boundary conditions of
Eqs. (17) become:
X̂ðn̂ ¼ 0;gÞ ¼
0; 0 � g < 1;

X̂st ; g ¼ 1

@X̂
@g

( �����
g¼0

¼ 0; n̂ � 0 ð18:aÞ

T̂ðn̂ ¼ 0;gÞ ¼
0; 0 � g < 1;

T̂st; g ¼ 1

@T̂
@g

( �����
g¼0

¼ 0; n̂ � 0 ð18:bÞ

X̂ðn̂;g ¼ 1Þ þ d2T̂ðn̂;g ¼ 1Þ ¼ 1þ d2; n̂ � 0 ð18:cÞ

Le
@T̂
@g

�����
g¼1

¼ d1

d2X0 	 ð1� d3 	 X̂ðn̂;g ¼ 1ÞÞ
@X̂
@g

�����
g¼1

ð18:dÞ

êðn̂ ¼ 0Þ ¼ 1 ð18:eÞ

where d1; d2 and d3 are defined as:

d1 ¼
c1Labs

Cp
ð19Þ

d2 ¼
X1 � XeqðT0Þ

X0 � X1
ð20Þ

d3 ¼ 1� X1
X0
¼ c1 	 DTsub

X0 	 ð1þ d2Þ
ð21Þ

with DTsub ¼ TeqðX0Þ � T0 the initial subcooling of a sheet flow with
TeqðX0Þ ¼ ðX0 � c2Þ=c1. Substituting X1 from (A.3) into the Eqs. (20)
and (21), it is easy to find that:

d2 ¼
d1

X0
ð22Þ

Taking into account Eq. (22), the normalised expanding sheet
Eqs. (17) and (18) only contain three dimensionless groups: the Le-
wis number Le, the dimensionless heat of absorption d2 and the
normalised subcooling d3. Notice that these sheet equations form
a nonlinear system for which no evident analytical solution exists.
The sources of this nonlinearity are present in Eqs. (17) and (18.d):
the term reflecting the mass flow rate increase and the term
describing the surface advective velocity.
5.2. Slowly increasing mass flow rate ( _m 
 const:) model

Subcooling in refrigeration is commonly conducent to d3 � 1.
This immediately gives, dê=dn� 1, which means that the sheet
mass flow rate _m ¼ perhqV0=180 increases slowly along radial
direction. For sufficiently small values of d3, it is possible to sim-
plify the nonlinear equations (17) in order to obtain the following
linear system for the coupled heat and mass transfer in an expand-
ing sheet:

@X̂

@n̂
¼ @

2X̂
@g2 ð23:aÞ

@T̂

@n̂
¼ Le

@2X̂
@g

ð23:bÞ

Boundary conditions for this slowly increasing mass flow rate mod-
el are still defined by Eqs. (18), except for Eq. (18.d) which collapses
to:

Le
@T̂
@g

�����
g¼1

¼ @X̂
@g

�����
g¼1

ð24Þ

It can be shown that the above linearised system of equations is
equivalent to the expressions obtained using a simplified model
that considers infinite dilution at the interface (e.g. null advective
transport at the surface) in which Labs is substituted by a modified
specific heat of absorption L�abs ¼ Labs=X0. Observe that the linearity
of the Eqs. (23) and (24) simplifies their integration.



Table 2
Reference values of sheet geometry and operation.

e0 [m] r0 [m] h [�] V0 [m s�1]

3.38 � 10�4 7.64 � 10�3 75 6
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5.3. Large Lewis (Le� 1) model

The Lewis number, Le, is much greater than one in most of the
mixtures used in absorption systems. This means that diffusion heat
transfer is more effective than mass transfer along the transversal
direction. As a result T̂ will only show a relevant dependence on n̂.
Under this simplification, Eq. (23.b) is no longer useful and the fol-
lowing energy balance is adopted in the whole section of the sheet:

dð _mhÞ
dr

¼ 2
p

180
h _m00vhv ð25Þ

Here, h ¼ CpðT � Tref Þ is the specific enthalpy of the liquid solution,
taking Tref as a reference temperature.

Subsequently, under the approximation of large Lewis number
and considering _m 
 const:, the system of equations to be solved
is composed of the rearranged Eqs. (25) and (18.c),

@X̂
@g

�����
g¼1

¼ �1
d2

@X̂

@n̂

�����
g¼1

ð26:aÞ

T̂ðn̂Þ ¼ � 1
d2

X̂ðn̂;g ¼ 1Þ þ 1
d2
þ 1 ð26:bÞ

along with Eq. (23.a) and the initial and symmetry boundary condi-
tions for X̂, Eq. (18.a). Note that, when Le� 1, the initial conditions
at the free surface collapses to X̂ð0;g ¼ 1Þ ¼ 1þ d2 and
T̂ð0;g ¼ 1Þ ¼ 0. The main advantage of this system of equations
for Le� 1 is that their analytical solution is greatly simplified. This
is especially true as the normalised mass fraction X̂ can be solved
first and then introduced in Eq. (26.b) to calculate the normalised
temperature T̂.

5.4. Boundary layer model

A boundary layer model can be chosen to describe the initial re-
gion in which changes of temperature and species mass fraction in
the expanding sheet only occur in a thin layer, close to the free sur-
face. The coupled heat and mass transport in the boundary layers
can be modelled as if they were in a semi-infinite volume of liquid,
for instance comprising �1 < g < 1 and n̂ � 0, as the boundary
layers from opposite sheet surfaces do not touch each other. As will
be shown in the simulation results, in this region X̂ and T̂ at the
free surface stabilise to equilibrium values, X̂st and T̂st , in the same
manner as is found in falling-film absorption [21]. A closed-form
solution to the system of Eqs. (23) in such a semi-infinite domain
can be obtained by means of the following self-similar variable
[31]:

/ ¼ 1� g
2n̂1=2

ð27Þ

The transformed equations using (27) solely depend on / and their
integration reduces to expressions that depend linearly on the error
function, erf ðxÞ ¼ 2p�1=2

R x
0 e�u2 du:

X̂ð/Þ ¼ X̂st 	 ½1� erf ð/Þ� ð28:aÞ
T̂ð/Þ ¼ T̂st 	 ½1� erf ð/=Le1=2Þ� ð28:bÞ

where the stable values of mass fraction and temperature at the free
surfaces are:

X̂st ¼
Le1=2 	 ðd2 þ 1Þ

d2 þ Le1=2 ð29:aÞ

T̂st ¼
d2 þ 1

d2 þ Le1=2 ð29:bÞ
Eqs. (28) and (29) are almost identical to the expressions first ob-
tained by Nakoryakov and Grigorieva [37] regarding absorption into
a falling film over an isothermal wall. Though similar, the expres-
sions for T̂st or X̂st in the present investigation and in [37] differ,
as no advective velocity relative to the interface was included in
[37].

The point n̂tr , where a transition starts between boundary layer
and fully developed flow in the sheet, can be roughly estimated as
the radial position wherein temperature at the symmetry plane of
the sheet increases to a sensible fraction ck of T̂st after the merger
of opposing thermal boundary layers:

n̂tr ¼
1

4 	 Le 	 ½inverf ð1� ckÞ�2
ð30Þ

with inverf, the inverse function of the error function, and 0 < ck < 1.
6. Solving procedure

6.1. Numerical solution of the nonlinear model

A finite-difference numerical method [38] has been developed
for the solution of the set of parabolic differential equations (17)
together with their boundary conditions (18). It consists of a
semi-implicit numerical scheme that marches the solution along
the radial direction of the sheet from the initial position r ¼ r0. A
detailed description of this method can be found in [34]. Since
the equations involved in the problem are nonlinear, their numer-
ical solution is computationally demanding inasmuch as it requires
the inversion of a large matrix during every integration step. The
numerical scheme has been programmed in a personal computer
and the accuracy of the results has been assessed through the sen-
sitivity of the calculated X̂ and T̂ on the mesh size, as well as the
concordance between global energy and mass balances in the
sheet.

Table 2 contains geometric and hydrodynamic parameters that
were selected for the simulated reference cases. Their values have
been obtained from a standard flat-fan spray nozzle whose exit
section has deq = 2 mm equivalent diameter and a0 = 9.3 mm width,
operating at an injection pressure between 1.0 and 2.0 bar.

6.2. Analytical and numerical solution of the _m 
 const: model

The assumption of slowly increasing mass rate (described ear-
lier) leads to a simplified set of linear differential equations (Eqs.
(23), (18.a–c) and (24)). Thus, it is possible to follow a procedure
analogous to the one first presented by Nakoryakov and Grigorieva
[39] on falling films in order to obtain a series solution of X̂ and T̂ .
An interesting result of the series solution of X̂ and T̂ is that it de-
pends on the integral values of mass fraction and temperature at
the initial position (n̂ ¼ 0) but not on the specific values of X̂ and
T̂ at the free surface (n̂ ¼ 0,g ¼ 1). In practice, obtaining the eigen-
values of the series becomes cumbersome while the resulting solu-
tion converges quite slowly. It is also found that the series solution
values for X̂ and T̂ ripple near the initial position of the expanding
sheet on account of numerical artifacts produced by the sharp
boundary condition at n̂ ¼ 0. Similar effects have been also re-
ported in [33,40]. Therefore, all the results presented in this study
under the _m 
 const: approximation have been integrated numer-



Table 3
Relevant dimensionless groups.

LiBr–H2O LiNO3–NH3

Le 88.8 686
Pet 164 44.2
d1 6.45 1.86
d2 10.2 2.95
d3 7.62 � 10�3 2.01 � 10�2

Fig. 4. Radial variation of mass fraction and temperature in the expanding sheet for
the pair LiNO3–NH3: local values at two transversal positions, g, and transversally
averaged (or bulk) results.
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ically via the algorithm developed for the nonlinear model after
imposing d3 ¼ 0.

6.3. Analytical solution of the Le� 1 model

In this case, the series solutions chosen for the normalised mass
fraction and temperature in the expanding sheet consist of:

X̂ðn̂;gÞ ¼ C0 þ
X1
n¼1

CnQnðgÞe�f2
n

n̂

ð31:aÞ

T̂ðn̂Þ ¼ D0 þ
X1
n¼1

Dne�f2
n n̂ ð31:bÞ

where QnðgÞ ¼ cosðfngÞ. The first terms of the series (31) are C0 = 1
and D0 ¼ 1 in order to assure that the normalised mass fraction and
temperature tends to one as n̂!1. The remaining coefficients are
[34]:

Cn ¼
2 	 ð1þ d2Þ 	 cosðfnÞ

d2 þ cos2ðfnÞ
ð32:aÞ

Dn ¼
�2ð1þ d2Þ

d2ð1þ d2Þ þ f2
n

ð32:bÞ

The eigenvalue fn should satisfy the transcendental equation,

tanðfnÞ ¼ �
fn

d2
ð33Þ
Fig. 3. Radial variation of mass fraction and temperature in the expanding sheet for
the pair LiBr–H2O: local values at two transversal positions, g, and transversally
averaged (or bulk) results.
which has been obtained by requiring the series (31) to satisfy the
boundary condition (26.a). An explicit equation for the estimation
of fn is proposed in the present work:

fn 

d2p
8n
	 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n

d2

� �2
s0

@
1
Aþ np; n � 1 ð34Þ

This equation, which is deduced in approximating the tangent func-
tion by a rational expression of second order, will be assessed as an
alternative of the exact solution of Eq. (33). The accuracy of the
eigenvalues estimated using (34) rapidly increases with n and with
d2, and is good enough for the calculation of X̂ and T̂ in practical
engineering applications. For example, taking d2 values from Table
3, the largest error in accuracy appears in f1 and is less than 0.8%
and 4.2% of the exact values that satisfy Eq. (33) in sheets of LiBr–
H2O and LiNO3–NH3, respectively.
7. Results and discussion

7.1. Temperature and mass fraction profiles

Figs. 3 and 4 contain the stream-wise computed profiles of nor-
malised mass fraction X̂ and temperature T̂ for the reference pairs
LiBr–H2O and LiNO3–NH3. The plotted results correspond to the
four models analysed in this study.

Relevant dimensionless groups used in the simulation can be
found in Table 3 based on the operative conditions of Table 2
and the properties of Table 1. Values at the free surface g ¼ 1, at
the centre of the sheet g ¼ 0 (i.e. the plane of symmetry) and at
points in the bulk have been represented in the curves. Bulk values
correspond to the normalised transversely averaged mass fraction
and temperature:

X̂bðn̂Þ ¼
Xb � X0

X1 � X0
¼
Z 1

0
X̂ðn̂;gÞdg; T̂bðn̂Þ ¼

Z 1

0
T̂ðn̂;gÞdg ð35Þ



Table 4
Main results.

LiBr–H2O LiNO3–NH3

n̂tr 8.49 � 10�4 1.10 � 10�4

X̂st 5.38 3.55
T̂st 0.571 0.135
Sh1 1.15 2.25
Sh1 3.19 3.34
maxð _mv

_m0
Þ 7.68 � 10�3 2.05 � 10�2
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The normalised bulk mass fraction is equivalent to the ‘‘Approach to
Equilibrium Factor F” [41] when specialised to the case of adiabatic
absorption [42], and can be viewed as an efficiency of the absorp-
tion process.

Three main regions of flow behaviour are clearly distinguished
in the results of the complete nonlinear model: a boundary layer,
a transition and a fully developed region.

7.1.1. Boundary layer region
In this initial portion of the sheet, the absorbate mass and the

heat transported into the sheet affect only a thin layer close to
the free surface. The remaining volume of the sheet is still at
the initial temperature and mass fraction conditions. As Figs. 3
and 4 show, this region ranges from the initial position n̂ ¼ 0,
to approximately the normalised transition radius n̂tr (see Eq.
(30)), which has been calculated with ck ¼ 0:01 and included in
Table 4. Observe that the boundary layer region is longer for
the LiBr–H2O solution than it is for the LiNO3–NH3 solution be-
cause the thermal boundary layer reaches the sheet symmetry
plane earlier in the ammonia solution (on account of its larger Le-
wis number).

Normalised absorbent mass fraction X̂ and solution tempera-
ture T̂ stabilise at the free surface of the boundary layer region
according to the results of the complete nonlinear model. These
local stable values are well predicted by X̂st and T̂st in the boundary
Fig. 5. Transversal profiles of mass fraction and temperature in the expanding sheet
for the pair LiBr–H2O at various normalised radial distances n̂.
layer approximation theory. The fact that X̂ and T̂ become stable at
the free surface is due to the counteracting effects of mass absorp-
tion (which tends to increase solution temperature) and species
equilibrium at the surface (which tends to decrease the solution
temperature whenever the absorbate mass fraction increases). It
should be noticed, however, that the parabolic set of equations
(3) and (4), and subsequent models, cease to be valid in a previous
region, very close to r0, because diffusion along the radial coordi-
nate is not negligible compared to transversal diffusion when
n̂! 0. Nevertheless, the contribution of this early region to the to-
tal amount of heat and mass transferred into the sheet is negligible
since its exposed surface to the vapour is extremely small. This la-
ter fact also explains why the solution is weakly affected by the
selection of the initial conditions at the sheet free surface (g ¼ 1)
performed in Eqs. (5) and (6).

The transversal profiles of normalised mass fraction and
temperature are depicted in Figs. 5 and 6. The predicted results
from the boundary layer model and from the numerical simula-
tion of the entire sheet match almost perfectly inside the
boundary layer region, bearing out the correctness of this
approximation.

In the boundary layer region, as well as in the rest of the sheet, a
numerical solution using the _m ¼ const: model gives results that
are practically indistinguishable from the solution of the complete
nonlinear model because common subcooling in adiabatic absorp-
tion, of the order of magnitude of 10 �C, is conducent to very small
d3 (see Table 3). By definition, the approximate model for Le� 1
cannot provide thermal gradients in the transversal direction and
hence fails in predicting the normalised mass fraction at the free
surface of the sheet. For clarity, curves of this model have not been
included in Figs. 5 and 6 for n < n̂tr . Notice that a decrease in Le in-
creases the thermal gradient and reduces the transversal mass
fraction gradient in the boundary layer region, since T̂st decreases
while X̂st diminishes.
Fig. 6. Transversal profiles of mass fraction and temperature in the expanding sheet
for the pair LiNO3–NH3 at various normalised radial distances n̂.



Fig. 7. Radial variation of the normalised sheet thickness for the pairs LiBr–H2O and
LiNO3–NH3.
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7.1.2. Transition region
A transition region separates the boundary layer behaviour

from the final fully developed heat and mass transfer region in
the expanding sheet. The transition starts when the temperature
boundary layers reach the symmetry plane of the sheet at n̂tr . From
this moment, a change of morphology in the temperature and mass
fraction profiles occurs, causing the loss of stable conditions for T̂
and X̂ at the free surface of the sheet. Numerical solutions of the
nonlinear model as well as the _m ¼ const: model in Figs. 3–6 lend
evidence to this fact. The transition region can be considered
nearly completed when absorbate mass fraction at the centre of
the sheet starts to increase. To be precise, heat and mass transfer
in the expanding sheet are not near fully developed until n 
 0:2,
as will be shown later.

Of course it is clear that notorious discrepancies between the
nonlinear model and the boundary layer approximation arise in
the transition region. This mismatch is shown here in Fig. 6 for
g ¼ 0:002. Using the Le� 1 model and the exact calculation of fn

(Eq. (33)), acceptable results can be obtained in this region for
the normalised mass fraction profiles at the sheet surface. This is
especially true for the LiNO3–NH3 solution. In this working pair,
the Lewis number is relatively large so that the transversal gradi-
ent in temperature is less pronounced than in LiBr–H2O. In fact
the actual transversal temperature profiles in the LiNO3–NH3 solu-
tion are practically horizontal within this region, yielding quite
accurate predictions of T̂. In the case of the ammonia solution how-
ever, the explicit approximation of fn provided by Eq. (34) (hollow
circles in the plot) leads to a reduction in the accuracy of the re-
sults as d2 for this working pair is lower than it is in the aqueous
solution. As the analytical solutions for the Le� 1 model demon-
strates, X̂b tends to T̂b when Le increases.

7.1.3. Fully developed flow region
After the merger of mass fraction boundary layers, the flow can

be regarded as fully developed, in the sense that heat and mass
transfer are commanded by the bulk temperature and mass frac-
tion of the flow and not by the shape evolution of their gradients
in the sheet. X̂ and T̂ tend to unity when n̂!1 as described in
Appendix A. Transversal profiles given in Figs. 5 and 6 show that,
for a sufficiently large streamwise distance, transversal gradients
of temperature and absorbent mass fraction diminish and their
quantities at the surface and at the symmetry plane of the sheet
tend to equality with their bulk values. Henceforth, it is in the fully
developed zone where the Le� 1 model, taking fn either exact or
approximate, delivers results in very fine agreement with the non-
linear model.

It should be mentioned that the profiles of normalised mass
fraction and temperature, described here for expanding sheets,
posses a distinctive shape similar to the case of falling-film absorp-
tion described in [33,32,37,43].
7.2. Sheet thickness distribution

Fig. 7 contains the normalised thickness profiles along the
streamwise direction for the two solution pairs selected in this
investigation. ê increases owing to the continuous incorporation
of absorbate vapour into the solution during absorption. Indirect
calculation of the normalised thickness ê has also been performed
knowing that the sheet thickness is directly proportional to the
sheet’s mass flow rate:

ê ¼
_m
_m0
¼ 1

1� d3X̂b

ð36Þ

where _m0 ¼ pe0r0hqV0=180 is the mass flow rate of solution at the
initial position in the sheet and X̂b is the normalised bulk mass frac-
tion, Eq. (35). Excellent agreement is encountered in Fig. 7 between
ê as calculated directly with the nonlinear model and ê indirectly
estimated (through Eq. (36)) using the results of the _m ¼ const:
model. As expected, the Le� 1 model presents poorer quantitative
results in the boundary layer region for the solution with lower
Lewis number value (LiBr–H2O). Differences between the results
calculated with exact f1 and approximate f1 are not relevant when
calculating the sheet thickness. As will be shown later, this is also
true for the Sherwood numbers.

Fig. 7 demonstrates that Eq. (36) can be used to obtain accurate
estimation of the maximum normalised thickness attainable under
complete adiabatic saturation of the sheet when n̂!1; that is,
when X̂b ¼ 1:

ê1 ¼
1

1� d3
ð37Þ

Under the reference parameters of Table 3, the normalised thick-
ness grows faster with n̂ and reaches the larger ê1 (the largest
absorbate absorption per unit of initial solution flow rate) in sheets
of LiNO3–NH3 solution than in sheets of LiBr–H2O.
7.3. Local and mean mass transfer coefficients

In order to characterise the mass transfer coefficients, the local
Sherwood number, Sh, and the mean Sherwood number, Sh, of the
sheet can be calculated using as characteristic lengths the sheet
half thickness, Lc ¼ e=2, and the sheet mean half thickness (sheet
volume/free surface area), �Lc ¼ e0=ðnþ 1Þ, respectively:

Sh¼hm 	Lc

D
¼ 1

X0 	 X̂ðn̂;g¼1Þ� X̂bðn̂Þ
h i

	 1�d3X̂bðn̂Þ
h i 	@X̂

@g

�����
g¼1

ð38:aÞ

Sh¼
�hm

�Lc

D
¼ 4PetLeX̂b

ðn2�1Þ 	 ðnþ1Þ 	X0 	 ð1�d3X̂bÞ 	DX̂lm

ð38:bÞ

where hm ¼ _m00v=½qðXb � XsÞ� is the local heat transfer coefficient [31]
at n̂. �hm ¼ _mv=½qAsDXlm� is the mean mass transfer coefficient [44],
which represents a mean value of hm throughout the sheet surface
As ¼ phðr2 � r2

0Þ=180 up to a given n̂. The logarithmic mean absor-
bate mass fraction difference DXlm ¼ ðDX0 � DXÞ= lnðDX0=DXÞ has
been included in the �hm definition, DX ¼ Xb � Xs being the differ-
ence between bulk and surface absorbent mass fractions at n̂ (DX0

is the same difference evaluated at n̂ ¼ 0) [42]. In Eq. (38.b) DX̂lm

is calculated with DX̂ ¼ X̂s � X̂b.



Fig. 8. Radial variation of the local and mean Sherwood numbers in the expanding
sheet for the pairs LiBr–H2O and LiNO3–NH3.

Table 5
Dimensionless length w for F ¼ 95% and fixed a0.

h [�] LiBr–H2O LiNO3–NH3

0 1.18 � 105 5.50 � 105

15 2290 3970
75 852 1450
150 631 1073
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Fig. 8 depicts the local and mean Sherwood numbers for the two
working pairs under study. Progressive relaxation of the absorbate
mass fraction gradient into the sheet monotonically decreases the
local Sherwood number from infinite at n̂ ¼ 0 toward a constant
asymptotic value Sh1 for n̂!1. The mean Sherwood number
reproduces this tendency, having always a superior value than its
local definition, because very large values of local hm at initial ra-
dial positions significantly increase �hm. In general the _m ¼ const:
model provides almost identical results to the full nonlinear model.
Although in qualitative agreement, the Le� 1 analytical model
shows discrepancies in the boundary layer region for the solution
with the smaller Le (i.e. LiBr–H2O). It is also possible to explicitly
estimate the Sherwood number in the boundary layer region by
substituting Eqs. (28) into (38):

ShBL ¼
1

X0 	 ð1� d3X̂stÞ 	
ffiffiffiffiffiffi
pn̂

q 
 1

X0 	
ffiffiffiffiffiffi
pn̂

q ð39:aÞ

ShBL ¼
8½PetLeðn3 � 1Þ=3p�1=2X̂st

X0 	 ð1� d3X̂stÞ 	 ðn2 � 1Þ 	 ðnþ 1Þ 	 DX̂lm


 8PetLen̂1=2X̂st

X0 	
ffiffiffiffi
p
p
	 ðn2 � 1Þ 	 ðnþ 1Þ 	 DX̂lm

ð39:bÞ

Here, Eq. (28.a) has been used to obtain the normalised bulk mass
fraction X̂b ¼ 2X̂stðn̂=pÞ1=2

=ð1� d3X̂stÞ required in DX̂lm. Notice that
it is obtained a fine accordance between Eqs. (39) and the
numerically obtained Sherwood number in the boundary layer re-
gion except, notably, for n̂ very close to zero where numerical inte-
gration does not converge to boundary layer self-similar solutions.
This excellent agreement confirms the hypothesis that the numeri-
cally calculated transport of mass and heat is not substantial in the
very early region, prior to the surface stabilisation to X̂st and T̂st . Lo-
cal Sherwood numbers of the two working pairs exhibit practically
coincident ShBL profiles as both solutions have identical X0.

The existence of the asymptotic minimum Sherwood numbers
Sh1 and Sh1 is due to the full development of the thermal and
mass fraction fields. In view of the local Sherwood profile, it can
be said quite rigorously that the coupled heat and mass transfer
do not approach fully developed conditions before n̂ 
 0:2. Includ-
ing the results of the Le� 1 model, Eq. (31), into Eq. (38), these
fully developed flow Sherwood numbers can be estimated for the
limit n̂!1:

Sh1 

f2

1

X0 	 ð1þ d2Þ
ð40:aÞ

Sh1 

4
3
ð d2

Le1=2 þ 1ÞSh1 ð40:bÞ

where f1 is the first eigenvalue, which can be approximated by Eq.
(34) for n = 1. According to Fig. 8, Eqs. (40) provide good quantita-
tive approximations in the fully developed region. Eqs. (40) also ex-
plain that the Sherwood number for the LiNO3–NH3 solution is
greater than that for LiBr–H2O solution because the first working
pair has the highest d2 (f1 being weakly dependent on d2).

7.4. Effect of the aperture angle

Normalised mass fraction, temperature and sheet thickness
profiles along n̂ are independent of the expanding sheet aperture
angle h. This is because its effect is concealed in n̂ through Pet ,
which is a function of r0 ¼ a0=½2 sinðh=2Þ�. This is also true for Sh
and it is almost true for Sh on account of Eqs. (38). It can be
demonstrated that exactly the same dimensionless equations as
those deduced in this investigation for expanding sheets arise for
non-expanding sheets. This follows provided the next variables
are used in non-expanding sheets instead of n̂, g and ê:

n̂NE ¼
2y

PelLee0
; gNE ¼

2z
e
; êNE ¼

e
e0

ð41Þ

where y accounts for the streamwise coordinate (y ¼ 0 at the initial
section of the sheet), e0 is the initial thickness of the non-expanding
sheet and Pel ¼ V0e0=2a is the Peclet number based on the stream-
wise velocity of the non-expanding sheet. Note that, in expanding
sheets, y ¼ r � r0. Hence, expanding and non-expanding sheets, at
a given y, each satisfy the following relation:

n̂� n̂NE ¼
ðPetLeÞ2

3
	 n̂3

NE þ PetLe 	 n̂2
NE ð42Þ

and thus, n̂� n̂NE > 0. This means that (for similar initial cross-sec-
tional area, equal injection velocity and same working pairs) an
expanding sheet configuration of a given (dimensional) length, be-
haves just as a non-expanding sheet of greater length. Table 5 re-
ports some examples of dimensionless sheet length w ¼ y2=e0

required for an approach to equilibrium factor of F ¼ 95%

(X̂b ¼ 0:95). Results are calculated with the nonlinear model and
fixed a0 from Table 2. As h decreases, the sheet length to reach
the pre-set 95% saturation increases. The largest w takes place al-
ways for the ammonia solution because it has the larger product
Pe 	 Le. Using the nozzle geometry of Table 2, sheet lengths of 72
or 125 mm are required for LiBr–H2O or LiNO3–NH3 solutions,
respectively, in order to reach F ¼ 95%. In general, the larger the an-
gle h, the greater n̂� n̂NE and in turn, expanding sheets have a great-
er performance advantage (higher hm and As) over non-expanding
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sheets of similar length. Similar comments for a non-expanding
sheet apply to a falling film of initial thickness equal to e0=2 flowing
along an adiabatic wall when using a model that approximates the
velocity field by a constant profile.

7.5. Effect of the heat of absorption

The heat of absorption has significant influence, through d2 (see
Eq. (22)), on the heat and mass transfer into the sheet. Fig. 9 shows
the sensitivity to d2 on the normalised bulk mass fraction X̂b and on
the sheet absorption rate _mv= _m0 for a solution possessing the same
Le and the same dimensionless group c1DTsub=X0 than the LiBr–H2O
solution (Table 1). For the sake of clarity, the Le� 1 model with
approximate f1 has not been included in Fig. 9. This model repro-
duces the same trend as that seen in the X̂b curves in Figs. 3 and
4. The rate of absorption can be related to X̂b thanks to the follow-
ing relation:

_mv
_m0
¼ ê� 1 ¼ d3X̂b

1� d3X̂b


 d3X̂b ð43Þ

where _mv ¼ _m� _m0 is the mass flow of vapour absorbed into the
sheet from y ¼ 0 to a distance n̂. An increase of d2 significantly in-
creases X̂b (Eq. (35)) for a given n̂ since X1 decreases faster than
Xb. For this same reason, _mv= _m0 reduces with d2 so that �hm de-
creases when d2 increases, a result supported by Eqs. (39.b) and
(40.b). These comments are in agreement with Eq. (43), for which
an increase of d2 decreases d3 to such an extent that both the rate
of absorption and the sheet thickness decreases.

The curves for d2 ¼ 10:2 in Fig. 9 correspond to the reference
case of a LiBr–H2O working pair. However, the curves associated
to d2 ¼ 2:95 have a resulting d3 ¼ 0:0216 and, consequently, do
not exactly match the results for the LiNO3–NH3 solution
(d3 ¼ 0:0201 according to Table 3) depicted in diamond-shaped
points in Fig. 9.
Fig. 9. Effect of the normalised heat of absorption d2 on the bulk sheet mass fraction
and on the rate of absorption for a solution with the same Le and c1DTsub=X0 as the
reference case of LiBr–H2O. Results for the isothermal absorption and for the
working pair LiNO3–NH3 are also included.
With the aim to evaluate the models in close-to-isothermal con-
ditions, Fig. 9 also depicts the results for d2 ¼ 4:47� 10�3, corre-
sponding to the absorption of CO2 into an expanding water sheet.
This particular value has been calculated using the equilibrium
constant (deduced from Henry’s law [45]) and the heat of absorp-
tion of CO2 into water at 25 �C and at 1 atm [46]. In this special
case, the heat of absorption is very small and the increase of tem-
perature in the solution is essentially negligible. This explains why
the results for d2 ¼ 4:47� 10�3 under the approximate models of
_m ¼ const: and Le� 1 agree perfectly with the isothermal absorp-

tion model presented by Tamir and Rachmilev [18].
It is relevant to notice that both the _m ¼ const: model, the

Le� 1 model and the Tamir and Rachmilev [18] model, are con-
structed under the hypothesis of the conservation of the flow
rate in the sheet. This leads to a slight overprediction of X̂b as
compared to the nonlinear model at medium or large values of
n̂. This artificial overprediction of X̂b occurs because these models
provide a smaller mass in which to dissolve the absorbate than is
provided in the nonlinear model. For analogous reasons, T̂b will
be also overpredicted in the _m ¼ const: and in the Le� 1 models.
Nevertheless, the overpredictions in X̂b and T̂b get reduced when
d2 increases toward values that are more commonly encountered
in absorption refrigeration. This can be seen in Fig. 9 together
with the inaccuracy in X̂b that appears in the Le� 1 model at
very small n̂ and large d2, as this model is not able to resolve
large transversal gradients of temperature within the boundary
layer region.

7.6. Effect of initial subcooling

The normalised subcooling d3, Eq. (21), is the only parameter of
the dimensionless equations that retains the effect of the solution’s
initial subcooling DTsub. d3 has a weak effect on X̂ and T̂ since the
normalisation of these variables partially hides the decrement in
X and T caused by an increase of subcooling. Thus, Sh and Sh are
also weakly affected by d3. Mathematically this is clear as d3 is
Fig. 10. Effect of subcooling on the rate of absorption into expanding sheets of
different normalised radial lengths n̂ and aperture angles h, for the pairs LiBr–H2O
and LiNO3–NH3.
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absent from the X̂ and T̂ equations for the _m ¼ const: model and
from the Eqs. (38). However, d3 does possess a strong influence
on derived variables such as ê and _mv= _m0.

Fig. 10 depicts the rate of absorption calculated with the nonlin-
ear model as a function of d3 for selected values of n̂. Results corre-
sponding to different aperture angles h are also included in Fig. 10
for the initial cross-section parameters of the reference case, a0 and
e0, and for a sheet length y ¼ 0:1 m (w 
 592). X̂b is constant in
each curve of Fig. 10 and the absorption rate increases linearly with
the initial subcooling. This fact fully agrees with the approximation
provided by the right hand side of Eq. (43). The greater the n̂ or h
selected for the curve, the higher the sensitivity of the absorption
rate on the initial subcooling. Fig. 10 also contains the maximum
rate of absorption for a pre-set subcooling, which is reached when
n̂!1 and X̂b ! 1 in, for example, infinitely long or extremely thin
sheets. According to Eq. (43), the maximum rate of absorption that
cannot be surpassed under adiabatic absorption is given by:

max
_mv
_m0

� �
¼ d3

1� d3

 c1

X0ð1þ d2Þ
DTsub ð44Þ

Eqs. (43) and (44) do not depend on the flow morphology and, conse-
quently, also apply to other adiabatic absorption configurations using
sprays, films and bubbles. Under the reference conditions of Table 1,
Eq. (44) leads to 6:85� 10�4DTsub for LiBr–H2O solutions and to
1:49� 10�3DTsub for LiNO3–NH3. Therefore, taking the same DTsub

and a given n̂ or h, the ammonia solution has a superior rate of absorp-
tion than the aqueous solution if the properties of Table 1 are taken
for the comparison. This is also illustrated by the sub-plot in Fig. 10
calculated for 12 �C of subcooling. When substituting for the subcool-
ing of the LiBr–H2O and LiNO3–NH3 solutions (11.1 and 13.5 �C,
respectively) the ammonia solution may potentially absorb up to
2:18 times the maximum vapour absorbed by the aqueous solution.

8. Summary and conclusions

In this study, the nonlinear system of equations resulting from
modelling the coupled heat and mass transfer during non-isother-
mal absorption of vapour into laminar expanding liquid sheets has
been numerically integrated for two relevant examples of working
pairs in absorption refrigeration: LiBr–H2O and LiNO3–NH3. Simpli-
fication of this nonlinear set of equations has been conducted by
linearising them under the hypothesis of slowly increasing mass
flow rate ( _m 
 const:), yielding results that compare well to the
nonlinear model over the whole of the expanding sheet. In this re-
gard, the linear model has shown the equivalence between finite
dilution effects and the introduction of an equivalent specific heat
of absorption L�abs. Further simplification of the linear equations for
the frequent case of large Lewis number (Le� 1) has been accom-
plished. The exceptionally simple analytical solution for the Le� 1
model has been facilitated by an explicit evaluation of the solution
eigenvalues that has been proposed in this work. In the transition
and in the fully developed region, the Le� 1 model with exact
eigenvalues generates results of satisfactory quality for practical
engineering applications, especially for LiNO3–NH3 solutions.
When approximate eigenvalues are used, the Le� 1 model is more
suitable for LiBr–H2O solutions. In general, the Le� 1 model fails
in describing the initial region of the sheet, but this is not the case
for the boundary layer model adapted to this initial zone.

An analogy of the equations for expanding sheets and for non-
expanding sheets, or for falling films over adiabatic walls, has been
used in this study to analytically show that expanding sheets always
possess better performance than non-expanding sheets. It is also
shown that models relying on the mass flow rate conservation
assumption slightly overpredict the absorbed mass for working
pairs with small normalised heat of absorption d2. Additionally,
the local and mean Sherwood numbers have been characterised
and their closed-form analytical expressions determined for the
boundary layer and fully developed regions. In particular, it is shown
that the mean Sherwood number in expanding sheets is
4=3 	 ðd2Le�1=2 þ 1Þ times the local Sherwood number in the fully
developed region. Both dimensionless groups only depend on the
initial absorbent mass fraction and the normalised heat of absorp-
tion. For the same initial subcooling, and under the conditions of adi-
abatic absorption selected in this research, the maximum rate of
absorption for LiNO3–NH3 solutions is larger than for LiBr–H2O. All
these parametric expressions may be applied to the design of adia-
batic absorbers, and other processes such as desorption and direct
condensation on sheets may benefit from the models and proce-
dures presented in this study.
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Appendix A. Mass fraction and temperature in complete
adiabatic saturation

Absorption under adiabatic conditions decreases the absorbent
bulk mass fraction Xb and increases the bulk solution temperature
Tb toward limiting values. These limiting values are the minimum
absorbent mass fraction X1 and the maximum temperature T1,
which cannot be surpassed by the bulk variables unless, con-
tradicting the adiabatic condition, the solution is cooled during
the absorption process. It is possible to estimate X1 and T1 by
means of the following global mass and energy balances performed
for an ideal adiabatic absorber in which the solution reaches com-
plete saturation:

_m0 þ _mv1 ¼ _m1 ðA:1Þ
_m0h0 þ _mv1hv ¼ _m1h1 ðA:2Þ

where _m0; _m1 are the liquid solution mass flow rate at the inlet and
outlet of the ideal adiabatic absorber (respectively) and _mv1 is the
mass flow rate of the absorbed vapour. In Eq. (A.2) hv , h0 and h1
stand for the enthalpies of the absorbent vapour, the solution at
the chamber inlet, and the solution at the outlet, respectively. Note
that the specific heat of absorption can be approximated by
Labs ¼ hv � h0 and that equilibrium (i.e. X1 ¼ c1T1 þ c2) as well as
homogeneity take place at the outlet. Owing to the species mass
fraction homogeneity at the chamber inlet and outlet, the mass flow
rates are intrinsically related to the absorbent mass fraction
through _m0= _m1 ¼ X1=X0. From Eqs. (A.1) and (A.2), it is straightfor-
ward to deduce next the approximate expressions for the absorbent
mass fraction and solution temperature reached under complete
saturation in adiabatic absorption:

X1 ¼
X0 	 ðd1 þ XeqðT0ÞÞ

d1 þ X0
ðA:3Þ

T1 ¼
X1 � c2

c1
ðA:4Þ

where XeqðT0Þ is the equilibrium absorbent mass fraction, Eq. (10),
at the solution inlet temperature T0, and where d1 is the dimension-
less heat of absorption described in Eq. (19). Any point in a solution
sheet of infinite length would theoretically reach X1 and T1 be-
cause in this configuration the exposure time of the solution to
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the vapour is limitless and diffusion eliminates transversal gradi-
ents. Then, X̂ ! 1 and T̂ ! 1 if n̂!1. According to Eqs. (A.3) and
(A.4), and for the properties presented in Table 1, the maximum
increments of absorbate bulk mass fraction, i.e. X0 � X1, and bulk
temperature, T1 � T0, are, respectively, restricted to 4.82 � 10�3

and 10.1 �C for LiBr–H2O solutions, and to 1.27 � 10�2 and
10.08 �C for LiNO3–NH3 solutions.
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